PWM Library
The CCP module is available with a number of PIC32 MCUs. mikroC PRO for PIC32 provides a library which simplifies using of the PWM HW Module.

Library Routines
PWM_Init
Prototype |
unsigned int PWM_Init(unsigned long freq_hz, unsigned int enable_channel_x, unsigned int timer_prescale, unsigned int use_timer_x); |
---|---|
Description |
Initializes the PWM module with duty ratio 0. |
Parameters |
|
Returns |
|
Requires |
MCU must have the HW PWM Module. |
Example |
// Initializes the PWM module at 5KHz, channel 1, no clock prescale, timer2 : unsigned int pwm_period1; ... pwm_period1 = PWM_Init(5000, 1, 0, 2); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
PWM_Init_Advanced
Prototype |
unsigned int PWM_Init_Advanced(unsigned long freq_hz, unsigned long Fpb_kHz, unsigned int enable_channel_x, unsigned int timer_prescale, unsigned int use_timer_x); |
---|---|
Description |
Initializes the PWM module with duty ratio 0. |
Parameters |
|
Returns |
|
Requires |
MCU must have the HW PWM Module. |
Example |
// Initializes the PWM module at 5KHz, channel 1, no clock prescale, timer2 : unsigned int pwm_period1; ... pwm_period1 = PWM_Init(5000, 1, 0, 2); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
PWM_Set_Duty
Prototype |
void PWM_Set_Duty(unsigned duty, unsigned channel); |
---|---|
Description |
The function changes PWM duty ratio. |
Parameters |
|
Returns |
Nothing. |
Requires |
MCU must have the HW PWM Module. PWM channel must be properly initialized. See PWM_Init routine. |
Example |
// Set channel 1 duty ratio to 50%: unsigned int pwm_period1; ... PWM_Set_Duty(pwm_period1/2, 1); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
PWM_Start
Prototype |
void PWM_Start(unsigned int enable_channel_x); |
---|---|
Description |
Starts PWM at requested channel. |
Parameters |
|
Returns |
Nothing. |
Requires |
MCU must have the HW PWM Module. PWM channel must be properly configured. See the PWM_Init and PWM_Set_Duty routines. |
Example |
// start PWM at channel 1 PWM_Start(1); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
PWM_Stop
Prototype |
void PWM_Stop(unsigned int disable_channel_x); |
---|---|
Description |
Stops PWM at requested channel. |
Parameters |
|
Returns |
Nothing. |
Requires |
MCU must have the HW PWM Module. |
Example |
// stop PWM at channel 1 PWM_Stop(1); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
Library Example
The example changes PWM duty ratio on channels 1 and 2 continuously. If LEDs are connected to channels 1 and 2, a gradual change of emitted light will be noticeable.
unsigned int current_duty, old_duty, current_duty1, old_duty1;
unsigned int pwm_period1, pwm_period2;
void InitMain() {
CHECON = 0x32;
AD1PCFG = 0xFFFF; // Configure AN pins as digital I/O
TRISB = 0xFFFF; // configure PORTB pins as input
PORTD = 0; // set PORTD to 0
TRISD = 0; // designate PORTD pins as output
}
void main() {
InitMain();
current_duty = 100; // initial value for current_duty
current_duty1 = 100; // initial value for current_duty1
pwm_period1 = PWM_Init(5000 , 1, 1, 2);
pwm_period2 = PWM_Init(10000, 2, 1, 3);
PWM_Start(1);
PWM_Start(2);
PWM_Set_Duty(current_duty, 1); // Set current duty for PWM1
PWM_Set_Duty(current_duty1, 2); // Set current duty for PWM2
while (1) { // endless loop
if (RB0_bit) { // button on RB0 pressed
Delay_ms(1);
current_duty = current_duty + 5; // increment current_duty
if (current_duty > pwm_period1) { // if we increase current_duty greater then possible pwm_period1 value
current_duty = 0; // reset current_duty value to zero
}
PWM_Set_Duty(current_duty, 1); // set newly acquired duty ratio
}
if (RB1_bit) { // button on RB1 pressed
Delay_ms(1);
current_duty = current_duty - 5; // decrement current_duty
if (current_duty > pwm_period1) { // if we decrease current_duty greater then possible pwm_period1 value (overflow)
current_duty = pwm_period1; // set current_duty to max possible value
}
PWM_Set_Duty(current_duty, 1); // set newly acquired duty ratio
}
if (RB2_bit) { // button on RB2 pressed
Delay_ms(1);
current_duty1 = current_duty1 + 5; // increment current_duty
if (current_duty1 > pwm_period2) { // if we increase current_duty1 greater then possible pwm_period2 value
current_duty1 = 0; // reset current_duty1 value to zero
}
PWM_Set_Duty(current_duty1, 2); // set newly acquired duty ratio
}
if (RB3_bit) { // button on RB3 pressed
Delay_ms(1);
current_duty1 = current_duty1 - 5; // decrement current_duty
if (current_duty1 > pwm_period2) { // if we decrease current_duty1 greater then possible pwm_period1 value (overflow)
current_duty1 = pwm_period2; // set current_duty to max possible value
}
PWM_Set_Duty(current_duty1, 2);
}
Delay_ms(1); // slow down change pace a little
}
}
HW Connection
PWM demonstration
What do you think about this topic ? Send us feedback!